Kit pour Vélo H2 – FAQ


Why hydrogen ?

Because of the need of storage for renewable energy, hydrogen is on the way to becoming a popular means of storing energy in large quantities. This hydrogen is available either for back-conversion into electricity or for direct use as in hydrogen cars or, as in this case, to power a bicycle. With our kit for converting a traditional bicycle into a hydrogen-powered electric bicycle, we want to bring hydrogen to broad public. We want to make it common, we want to get used to its use with an application that is affordable and available to everyone.

Hydrogen, ist it really clean ?

Hydrogen is clean provided it is produced from renewable resources with appropriate technologies. This is the case of hydrogen produced by electrolysis with green electricity. So it is the consumer's choice.

Isn't it dangerous ?

Hydrogen is no more dangerous than gasoline or natural gas. The charateristics of combustion and therefore of a possible explosion of these fuels are different. Hydrogen is the lightest of all these molecules and the impact of an improbable explosion is less important. With modern handling and storage equipment, the risk of a leak or explosion is very low.

Whate are the advantages in comparison to electricity ?

First of all, in hydrogen we store more energy than in electricity. So the autonomy of a vehicle, car or bicycle or bus, is considerably increased.

Conversion kit

Why a kit ?

Existing hydrogen bikes have a high level of component integration. They are expensive not only because of the cost of the components, but also because of the cost of their manufacture and the amortisation of the development. With an open source kit, the user only has the costs of purchasing the hardware. With the conversion kit turning a traditional bike into a hydrogen-powered electric bike, the H2 bicycle becomes much cheaper and therefore affordable.

Why open source ?

We are Pangloss volunteers, philanthropists, who take pleasure in developing something useful. Our hope is to get feedback on ideas to improve the system. But our biggest interest is to get as many users as possible enthusiastic about the system so that suppliers can commit to making better and cheaper components.

Is there any competition ?

They have seen hydrogen-powered bicycles for about 20 years. They were prototypes or small series reserved for industrial users and public organizations. With the kit, we open the door for the private individual.

Where can I refill my bicycle ?

Hydrogen supply is a concern. There are recharging stations for example by Ataway in Chambery, or the hydrogen cartridge distribution system from Aaqius in Paris and Geneva. With the proposed kit we give them the motivation to create a regional charging network. If not, there is the possibility to install a small electrolyser at home. This is a relatively expensive, but available solution.


What will be the price of the kit ?

Today we buy components for the kit, electric motor, fuel cell, hydrogen storage, microcontroller, tubes, fittings and cables for about six to seven thousand euro. The projected price of the components, scaling with increasing production numbers, allow us to speak about a price for the kit in the order of 1000 euro.

How much costs a recharge ?

On a bicycle you typically store 50 grams of hydrogen. This is 60% more energy than stored on an electric bicycle. Based on the price of one kilogram of hydrogen of ten euro, as for hydrogen cars, the cost of recharging is half a euro.

A propos

Why all this ?

We want to encourage the use of green hydrogen by private individuals, and thus promote renewable energies. We want to create, in the Pays de Gex and the Lake Geneva Basin, a first centre of competence around hydrogen as a complement to green electricity. We want to contribute to the development of soft mobility in the Greater Geneva area, particularly in an area that is heavily impacted by relatively short border commuters' journeys.

Why us ?

As technical people - Harald and Klaus are physicists, Olivier is an engineer - we are naturally interested in new technologies. Our concern for the climate, the environment and the sustainability of our social system has led us to think about renewable energy applications and hydrogen. At Pangloss Labs we have found a favourable environment and an atmosphere nourishing our ideas.

What is donators' money used for ?

In order to buy components and build the hydrogen bicycle, we need a budget of about 15 thousand euros. Hydrogen-related components, fuel cell, hydrogen container, bottle with refill system, tools and accessories will consume 85 percent of these funds. We have included a small amount for travel for meetings with potential partners. The rest is used for consumables and contingencies.

Who takes care ?

Making the hydrogen bicycle is a Pangloss Labs project. It is, therefore, supported by the association. The project has already received funds to buy an electric motor, which has been installed on the bicycle that was donate by one of the members of the association. At Pangloss there is furthermore the possibility of rent workshop space in the FabLab. The project is lead by Klaus Röhrich, Harald Wirth and Olivier Eugene.

Kit pour Vélo H2

Conversion kit for hydrogen bicycle

Project description

We want to co-create a conversion kit «open source»
to transform classical bicycles into hydrogen powered electric bicycles.

Who we are ?

The project "Kit pour Vélo H2" is a project of Pangloss Labs association at Ferney-Voltaire, France. The project is one of the many co-creation projects of the members of the association.

Raison d’être : Promote green hydrogen at fair price to promote the use of renewable energy.

Hydrogen is not easily available to the individual. Today, use of hydrogen is confined to
• subsidized projects which are run by the supplyer of the hydrogen equipment,
• particular applications like vehicle fleets , and
• trained guided users like La Poste.
In this environment we lack the opportunity for doing something ourselves, for using hydrogen in our daily life. With the concersion kit for the hydrogen bicycle and a viable hydrogen distribution available, we start into a new phase in the evolution of the hydrogen economy, the one that includes the common person.


An economy in which it is easy to get green hydrogen, even in small quantities and at affordable price, for individual use p.ex. to heat, to cook or -as is presented here - to move around on a motor assited bicycle.

Mission : Promote the use of renewable energy (“appellation hydrogène verte”).

Our primary goal is the creation of a kit to convert a standard bicycle into an electric bicycle powered by hydrogen. Making a prototype will serve to raise funds for the next stage.
The second goal is proposing a regional hydrogen infrastruture which is appropriate for the needs of the cyclists, and which is easy to copy and implement elsewhere.

Batterie or hydrogen power for the electric bike ?

For short rides in town, the electric bicycle is a good solution. But when you need to move over larger distances for example in the coutnryside, the electric bike's range is often too shorts. In particular commuters between a home in the outskirts of the city and a job inside can be disadvantaged by the autonomy limited by the energy stored in the battery. With hydrogen, the range of an electric vehicle can be much larger, because more energy can be stored in comparison to batteries.

Why hydrogen ?

To achieve our environmental and climate goals we must reduce CO2 emissions massively and utilise the advantages that come with renewable energies. For the storage of renewable elecricty produced with photo-voltaic panels or wind power generators, hydrogen is being established as a primary storage medium. Surplus energy is transformed into hydrogen - rather than being discarded - which thus is available not only for reconversion into electricity but also for direct use in a multitude of applications, in particular in individual mobility. Such hydrogen is truely green as it does not impact patterns of consumption like it is the case of electricity when renewble energy for transport cuts into the supply of renewable energy to other sectors.

Why Open Source ?

The use of hydrogen applications is generally confined to organizations and professional users. One of the obstacles is the cost of the equipment. With an open source development of the conversion kit the invidual users can construct his or her own hydrogen bicycle at the cost of the components only. This entails larger numbers of users and in turn cheaper components. Feedback from users will accelerate the development.

The advantages …

  • Increased autonomy because of larger energy storage on the bicycle with hydrogen than with batteires.
  • Changing a hydrogen cartouche or a battery takes about thesame time of a few minutes. But recharging a cartouche (50 gr H2) or a battery (0.5 KWh) makes the difference: few minutes for the hydrogen but hours of the battery.
  • Reduction, even elimination, of the hazardous materials in the batteries.
  • Hydrogen storage does not leak. There is no auto-discharge like it is observed with batteries.
  • The H2 bike has a greater lifetime that the battery electric bike.
  • The price of the conversion kit can be comparatively low. Therefore the hydrogen bicycle will come with an interesting price tag.
  • Potentially lower operational cost and therefore an advantageous TCO (Total Cost of Ownership) compared to battery-electric bicycles - once investment cost is reduced. (R. Berger, “Business case for FC-electric bikes”, FCH 2 JU, 2017)
  • A heat-exchcanger at the fuel cell can be integrated into the bike. The heat can be used to warm seat and handles. Or for heating a metal hydride cartouche.
  • Today, the weights of hydrogen and battery electric bicycles is not much different. With the conversion kit the weight of the hydrogen bicycle possibly can be further reduced.
  • Both hydrogen and battery electric bicycles produce no other emissions than water vapour, they are « zéro émission » vehicles.
  • Hydrogen and battery electric bicycles are particularly quiet.
  • Eventually it will be possible capturing energy from breaks or when rolling downhill with a reversible fuel cell.

… and the disadvantages

  • Primary energy consumption is approximately twice as that of an electric bicycles (conversion efficiency e- → H2 → e-) for the same autonomy.
  • There is no appropriate hydrogen distribution, neither for small gas bottles nor for metal hydride containers. Electrolysers are expensive.
  • The price of hydrogen is (still) high because of the investments for the infrastructure.

The challenges

Fuel cells exist. We need to find the right fuel cell for use on the bicycle.

We need to find appropriate, i.e. cheap, light and compact hydrogen storage either as compressed gas in a bottle or dissolved in a metal hydride container.

We need to create the hydrogen infrastructure (storage container leasing, vending machines, centralized or individualized recharge) ?

Some links :

questions FAQ

project status

brief history of the hydrogen bicycle