History of the Hydrogen Bicycle

A brief history of hydrogen-powered bicycles, or simply hydrogen bike or H2 bike. The information and images are the result of research on the Internet between October 2018 and February 2020. Sources are added at the bottom of the document. Certainly, this story is not perfect, but it gives a good impression of past projects.

Klaus Röhrich, Pangloss Labs, March 2020

The Beginnings

The first hydrogen-powered electrically-assisted bicycles were built in research enviroments.

The US-American “Hydrocycle” by Manhattan Scientifics with a German 670W PAC from NovArs was presented in 2000.
At the same time in Rome, Italy, ENEA was also working with hydrogen. Their small SCENIC 150 system (Sistema Cella EneaNuvera a Idrogeno Combustibile da 150 Watt) was used to assemble a hydrogen bicycle.
A little later, the Italian bicycle manufacturer Aprilia SpA took up the idea. As a professional bicycle manufacturer it redesigned the Hydrocycle of Manhattan Scientifics and built the first commercial hydrogen-powered bicycle. The Aprilia Enjoy Fuel Cell Bike was presented in 2001 with a 300 bar composite hydrogen storage cylinder. This H2 bicycle was called “An Invention of The Year” by Time Magazin on November 13, 2001 (article).
As an anecdote from this pioneering period, student Jörg Weigl from the University of Ulm in Germany broke the autonomy records for H2 bikes. With his recumbent bike construction he cycled 1200 kilometres during the Wasserstoff-Expo in Hamburg 2002..



The company Aprilia became quiet about its H2 bike around 2005. There was the American WL Gore & Associates who presented an evolution of the bikes of Manhattan Scientifics and Aprilia at the Fuel Cell Expo 2005 in Japan, but without any commercial success.

But the idea was disseminated. Universities, research centres and enthusiasts immersed themselves in the world of hydrogen, fuel cells and bicycles. Here is a review of the achievements.

Since its first prototypes, ENEA in Rome has not stopped developing hydrogen bicycles. Their 2009 model worked with a fuel cell of only 50W (6V x 8.5A) with 900 litres H2 on board. The autonomy was thus more than twice that of a conventional pedelec. Or, on the occasion of the Formula E Grand Prix to be held in Rome in April 2019, ENEA participated with a hydrogen bicycle in the E-Parade of ecological 2, 3 or 4-wheel vehicles.

ENEA 2000 ENEA 2009 ENEA 2019


Since 2008, a hydrogen bicycle was developed in Australia. The University of New South Wales built the H2 bike with a first prototype running in 2014 and a second one, the Hy-Cycle 2.0 in 2016.
In Italy, Vincenzo Antonucci in collaboration with TRE SpA (Tozzi Renewable Energy) and CNR-ITAE (Messina) presented his 26 Kg H2 bike at the “H2 Roma Energy & Mobility Show” in 2009.
In 2012, Trifyl surprised with their hydrogen-powered bike. This prototype was designed by Trifyl, the Departmental Service for the Recycling of Household Waste in the Tarn, in collaboration with the Ecole des Mines d’Albi and Albhyon, which specialises in hydrogen. Presented during a stage of the 2012 Tour de France, this bike was not, however, commercialized.
Also in 2012, at the Hochschule RheinMain, a prototype was built by Michael Röser, Stefan Dietrich and Georg Derscheid based on a Sustamo bicycle.
The development of the Gernweit Ped-Hy-lec bike began in 2008. The business consultant Holger Hanisch was supported by the Department of Hydrogen and Fuel Cell Technology of the University of Applied Sciences RheinMain, in cooperation with Ralph Luh Engineering Co. and Schunk Bahn- und Industrietechnik GmbH (all in Germany). The hydrogen bicycle had been developed until 2014. Its weight was 34.6 Kg and its price was somewhere above €7’000.


Besides the more traditional bicycles, in 2012 futuristic prototypes were conceived by visionaries. Examples are the design model by the Swede Johan Persson for Aprilia, or the “Hydogenia”, a hybrid between pedelec, rickshaw and fuel cell from IFAM (Fraunhofer Institute for Manufacturing Technology and Advanced Materials), Dresden.

Johan Persson’s Aprilia, 2012 Fraunhofer E-Bike Hydogenia, 2012


More recent are the prototypes of Vorradler (Germany 2014), Tc Mobility (Italy, 2015), Alex Bevan from Birmingham University (United Kingdom, 2017) with H2 internal combustion engine or the bicycle by Ankica Đukić at the University of Zagreb (Croatia, 2017).

Electrolyte Vorradler S3 FC, 2014 Tc Mobility Frisbee «Scoobi» H2, 2015
Alex Bevan, Birmingham University, 2017 Ankica Đukić, University of Zagreb, 2017


The Deutsches Zentrum für Luft- und Raumfahrt (DLR) developed a pedelec shown in 2014. This bicycle is now in their museum. DLR also developed a cargo bike. The technology is now exploited by Rytle GmbH in Hamburg, Germany.

DLR BZ-Rad, at the DLR museum DLR Cargo Bike, 2015


At the Fraunhofer Institute ISE in Germany the LiteFCBike had been developed since 2016. This complete fuel cell system with hydrogen storage in twelve metal hydride cartridges and buffer battery can be mounted on any electric bicycle replacing the battery. In combination with an electric bike conversion kit almost any bike can be converted into a hydrogen bike. The energy stored with the kit is about 270Wh, so only half of a standard pedelec battery (about 500 Wh).

Fraunhofer ISE, 2016 the hydrogen pack
We have not found any more information about the MicroBike E-go Hydrogen, advertised on the internet in May 2019 with a price of €4’500.

Of course, we’ve also seen industrial manufacturers trying to commercialize hydrogen-powered bicycles.

In November 2004, Palcan Fuel Cells Ltd. of Vancouver, Canada inaugurated its first assembly line at the Shanghai Tongji Nanhui Science and Technology Industrial Park and partnered with Nanjing Fuel Cell Company Ltd. Eventually, Palcan abandoned this business. In 2009, Palcan supplied a 300W PAC to the Chinese company Shanghai Giant & Phoenix Bicycle to power a hydrogen-scooter.

The German Masterflex AG had a little more success. Suppliers of fluid handling components and analysis systems, Masterflex began to get involved in the PACs business in 2001. The prototype of its HyBike with a 250W PEM and 45 grams of hydrogen on board was shown at the Hannover Messe 2004. In 2007, the city of Herten in Germany, a champion in the application of green technologies, bought ten HyBikes for €70’000. The hydrogen was to be supplied by its “Blue Tower” factory, but apparently there were technological problems. In the meantime Masterflex built the CargoBike together with the German bicycle manufacturer Hawk Bikes Entwicklung & Marketing GmbH. The Deutsche Telekom tested 14 CargoBikes in Berlin in 2008. There was no follow up from these prototypes, and in April 2011 Masterflex announced that it had divested its bicycle business.

Masterflex HyBike, 2004 Masterflex Cargo Bike, 2008
Palcan’s bike has had a successor in China. In 2007 Shanghai Pearl (Shanghai Pearl Hydrogen Power Source Technology Company) presented its “Hydrogen Fuel Cell Powered Bicycle PHB”. This bicycle weighed 32 Kg. Its price was estimated at $2,650 with a projection of $350 for mass production.

Valeswood ETD Ltd. in Birmingham, UK, used Shanghai Pearl technology to create its own hydrogen-powered bicycle in 2007. Since 2010, Valeswood ETD Ltd. seems no longer in business.

Valeswood 2007 Valeswood 2010
Another derivative of the Shanghai Pearl bicycle was marketed somewhat later by the Italian company Acta SpA. The company presented its first prototype in September 2009 at the EICMA Motor Show. The Acta bike would be used to gain experience, for example in Spain by the Fundación para el desarrollo de las nuevas tecnologias del hidrógeno en Aragón and the CCI Instituto Tecnologia de Canarias in Pozo Isquierdo, Gran Canaria, Islas Canarias. However, Acta has since abandoned this application to concentrate on the development of electrolysers.
Similar to the bikes of Shanghai Pearl, Valeswood or Acta was Iwatani’s bicycle. Iwatani Corporation developed hydrogen-powered electrically-assisted bicycles between 2006 to 2008 participating in the Japan Hydrogen & Fuel Cell Demonstration Project (JHFC). The outcome was presented at the Kansai International Airport in October 2009.
Also in this category of small bikes falls that of Pedego Electric Bikes. This Californian company was working with SiGNa Chemistry in the development of a range extender for their electric bike Pedego Classic Comfort Cruise. “For every 1.5 lbs. of weight a rider carries, an additional 700 Wh is available (compared to ~350 Wh for an ultra-high performance lithium-polymer battery at a weight of 7 lbs.).”
At the same time in Austria and Germany, the company Linde at Vienna, Austria, a supplier of industrial gases and technology, was active in the field. A pilot series of one hundred hydrogen-powered bicycles was produced and distributed to institutional and political users in 2015. The bike weighs only 23.6 kg with a price tag above €7’000, but Linde is not interested in marketing it.

The French company Gitane (Cycleurope Group) presented its prototype hybrid called Alter Bike in Nice in May 2013. It had been developed in collaboration with the French companies Pragma Industries and Ventec. The hydrogen is stored in interchangeable and recyclable metal-hydride capsules. The Alter 2 bike appeared in 2016.

Gitane Alter Bike, 2013 Gitane Alter Bike 2, 2016



The hydrogen bicycle αlpha is a development of Pragma Industries (Biarritz, France). The project is supported by ADEME. Pragma Industries had presented a prototype in 2015. These bicycles weigh 25 kg, comparable to the weight of an electric bicycle. They were given a price tag of €7’000, with the prospect of reducing the price to €3’500 by 2020. There are several projects using the αlpha such as the CARGHO project, which is a fleet of hydrogen bicycles tested by users in Chambéry and at Savoie Technolac, or also the Bhyke project in Cherbourg and Saint-Lô in the Manche with a fleet of 20 bicycles. Pragma Industries has also unveiled hydrogen eTrikes for the last meters in the delivery chain.

The MovR cargo bike by Rytle (Bremen, Germany) has been on the market since 2018. The company is a spin-off project of DLR’s Fuel Cell Power Pack (FC PP).

Atena Scarl is the high-tech centre for energy and the environment in Italy. Its flagship technology is a small fuel-cell system that is put on hydrogen-powered bicycles, scooters and micro cars. The systems are equipped with interchangeable cartridges or can be recharged independently. The hydrogen bicycle is supported by ENEA, Università Parthenope di Napoli and Università degli Studi di Perugia. In 2019, three models were available: Touring 250, Sport MB250, Sport MB500, but without price or point of sale.

In September 2019 CYCLEUROPE and STOR-H presented the Gitane Sneaker, a hydrogen-powered three-wheeled bicycle. The electric motor has a power of 250W. Two metal hydride cartridges provide a range of 50 km. The company Aaqius, supplier of the returnable cartridges, plans to create a local network of distributors.

Gitane Sneaker à hydrogène



List of the most important web pages visited, almost complete, in alphabetical order :









fch.europa.eu/sites/default/files/FCH Docs/171127_FCH2JU_BCs Regions Cities Consolidated Tech Intro_Rev. Final FCH_v11 (ID 2910585).pdf






Masterflex: Cargobike with mini fuel cells at Hanover Fair








Wired: Fuel Cell CargoBike